数学图形与几何思维导图

513好学 2022-04-23 22:17 编辑:荆超 289阅读

思维导图是一种体系化的逻辑思维方法,在初中的数学教学中,科学利用思维导图能够更好地帮助学生掌握分析思维、发散思维以及整理思维。

特别在数学的图形与几何教学中,通过对图形与集合的证明、推演,并将这些结论综合整理到思维导图中去,可以让学生沿着极强的逻辑线索来理解掌握这些难点数学知识。 

扩展资料:

数学中对于一些证明步骤较多的题目,只要求学生能逻辑正确、简单说理即可,不要求学生步骤非常准确,需要进行较长时间的训练才可达到较好的书面步骤。同时对于正方体的展开图要牢记11种形式,对于对面、邻面进行一定程度的总结帮助学生理解记忆。

主要目的是培养学生两类能力,其一是空间想象能力,其二是用数学语言说理能力;数学思想有分类讨论思想、数形结合思想、转化思想等。

初三数学 一元二次方程 思维导图

只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程 。一元二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0)。其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项 。

扩展资料:

主要形式

一般形式其中  是二次项,  是二次项系数;

 是一次项;  是一次项系数;  是常数项。

使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根 。

变形式 (  是实数,  ) (  是实数,  )   (是实数)。

配方式 两根式

参考资料:一元二次方程_百度百科

初三数学一元二次方程思维导图如下:

一元二次方程,只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。一元二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0)。其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。

一元二次方程的解

(1)一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解。一般情况下,一元二次方程的解也称为一元二次方程的根(只含有一个未知数的方程的解也叫做这个方程的根) 。

(2)由代数基本定理,一元二次方程有且仅有两个根(重根按重数计算),根的情况由判别式△=b²-4ac判定。

扩展资料:

判别式利用一元二次方程根的判别式(  )可以判断方程的根的情况 。

一元二次方程  的根与根的判别式 有如下关系: 

①当  时,方程有两个不相等的实数根;

②当  时,方程有两个相等的实数根;

③当  时,方程无实数根,但有2个共轭复根。

上述结论反过来也成立。

参考资料:百度百科:一元二次方程