现代科技的四大基础理论是什么?

513好学 2023-09-17 13:27 编辑:admin 90阅读

一、现代科技的四大基础理论是什么?

现代科技的四大基础理论包括:量子力学、基因理论、相对论、系统理论

一.量子力学

量子力学(quantum mechanics)是物理学的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的学科,都是以其为基础。

19世纪末,人们发现旧有的经典理论无法解释微观系统,于是经由物理学家的努力,在20世纪初创立量子力学,解释了这些现象。量子力学从根本上改变人类对物质结构及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。

二.达尔文—孟德尔—道金斯进化论(基因理论)

基因理论是研究生物体的遗传和变异的科学,是生物学的一个重要分支。查尔斯·达尔文进化论使用演化概念,是用来解释生物在世代与世代之间具有发展变异现象的一套理论,从原始简单生物进化成为复杂有智慧的物种。从古希腊时期直到19世纪的这段时间,曾经出现一些零星的思想,认为一个物种可能是从其他物种演变而来,而不是从地球诞生以来就是今日的样貌。当今演化学绝大部分以查尔斯·达尔文的进化论思想为主轴,是当代生物学的核心思想之一。

三.相对论

相对论(英语:Theory of relativity)是关于时空和引力的理论,主要由爱因斯坦创立,依其研究对象的不同可分为狭义相对论和广义相对论。相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了现代物理学的基础。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。不过近年来,人们对于物理理论的分类有了一种新的认识——以其理论是否是决定论的来划分经典与非经典的物理学,即“非经典的=量子的”。在这个意义下,相对论仍然是一种经典的理论。

四.系统理论

系统理论属于钱学森院士倡立的系统科学,是研究系统的一般模式,结构和规律的学问,它研究各种系统的共同特征,用系统理论知识定量地描述其功能,寻求并确立适用于一切系统的原理、原则和模型,主要对计算机、应用数学、管理等专业的某一方向有专门研究,掌握系统思维方法,能够从整体上系统地思考和分析问题,是具有逻辑和数学性质的一门新兴的科学。

系统指的是由相互联系、相互作用的要素(或部分)组成的具有一定结构和功能的有机整体;准确来说,要素+结构=系统。从系统的角度观察研究客观世界的学科,就是系统科学。它研究的领域横跨自然科学,社会科学,却除去其中较为狭窄的物理,生物,心理,经济意义,而把研究重心放在探究各个系统的本质规律上。系统科学主要研究系统的要素(或元素),结构,和系统的行为(性质)。

二、什么是基础科学?

基础科学以自然现象和物质运动形式为研究对象,探索自然界发展规律的科学。包括数学、物理学、化学、生物学、天文学、地球科学、逻辑学七门基础学科及其分支学科、边缘学科。

三、什么是传感器的静态特性?它有哪些性能指标?如何用公式表征这些性能指标

传感器的静态特性是指:对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。

因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。

简单来说就是指检测系统的输入为不随时间变化的恒定信号时,系统的输出与输入之间的关系。

性能指标:线性度、灵敏度、迟滞、重复性、漂移、测量范围、精度、分辨率、阈值、稳定性等等。

下面选几个参数做下介绍:

线性度:指传感器输出量与输入量之间的实际关系曲线偏离拟合直线的程度。

灵敏度:灵敏度是传感器静态特性的一个重要指标。其定义为输出量的增量Δy与引起该增量的相应输入量增量Δx之比。它表示单位输入量的变化所引起传感器输出量的变化大小。如果灵敏度S值越大,说明传感器越灵敏。

迟滞:传感器在输入量由小到大(正行程)和输入量由大到小(反行程)变化期间其输入输出特性曲线不重合的现象称为迟滞。也就是说,对于同一大小的输入信号,传感器输出信号的差值即为迟滞。

漂移:传感器的漂移是指在输入量不变的情况下,传感器输出量随着时间改变而发生变化的现象,这就是漂移。

扩展资料:

主要作用

人们为了从外界获取信息,必须借助于感觉器官。

而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中它们的功能就远远不够了。为适应这种情况,就需要传感器。因此可以说,传感器是人类五官的延长,又称之为电五官。

新技术革命的到来,世界开始进入信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。

在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。

在基础学科研究中,传感器更具有突出的地位。现代科学技术的发展,进入了许多新领域:例如在宏观上要观察上千光年的茫茫宇宙,微观上要观察小到fm的粒子世界,纵向上要观察长达数十万年的天体演化,短到 s的瞬间反应。

此外,还出现了对深化物质认识、开拓新能源、新材料等具有重要作用的各种极端技术研究,如超高温、超低温、超高压、超高真空、超强磁场、超弱磁场等等。显然,要获取大量人类感官无法直接获取的信息,没有相适应的传感器是不可能的。

许多基础科学研究的障碍,首先就在于对象信息的获取存在困难,而一些新机理和高灵敏度的检测传感器的出现,往往会导致该领域内的突破。一些传感器的发展,往往是一些边缘学科开发的先驱。

传感器早已渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之泛的领域。可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。

由此可见,传感器技术在发展经济、推动社会进步方面的重要作用,是十分明显的。世界各国都十分重视这一领域的发展。相信不久的将来,传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
点击我更换图片